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Abstract
The time-averaged acoustic forces acting on cylinders in a standing sound
field are investigated in detail by finite volume method (FVM) numerical
simulations. The forces on a cylinder in an inviscid and a viscous fluid
are predicted, and the effects of viscosity are discussed. Furthermore, the
secondary forces between two cylinders are also calculated. The numerical
results are compared with the theoretical solutions, COMSOL software and the
lattice Boltzmann (LB) method, and good agreement is achieved in most cases.

PACS numbers: 02.60.Cb, 47.35.Rs

1. Introduction

As is known, an ultrasonic sound field will exert time-averaged forces on particles suspended
in a fluid. These forces arise from the transfer of the momentum flux and are a second-
order effect of the governing equations [1]. In an ideal fluid, the total time-averaged force
exerted on a particle is the acoustic radiation force. It is more complicated in a viscous
fluid, because some nonlinear phenomena such as acoustic streaming appear, which influence
the momentum transfer between the acoustic field and the particles. Therefore Danilov [2]
suggested distinguishing between the radiation force and the mean force which actually act
on an object in a viscous fluid.

The time-averaged force can be applied to many practical fields such as acoustic sensors,
ultrasonic levitation and contactless particle manipulation [3–5] which has become a hot
research topic in ultrasonic devices.

There are a number of theoretical works on the acoustic forces acting on particles. King
[6] first calculated the acoustic radiation pressure on rigid sphere particles in an inviscid fluid
exerted by planar traveling and standing waves. Then, Yosioka and Kawasima [7] extended
King’s theory to compressible spheres, and Hasegawa and Yosioka [8] to elastic particles.
Gor’kov [9] proposed another more general and simple formulation where the scattered wave
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potential was determined by the solution for a potential incompressible flow past the sphere.
Westervelt [10, 11] took into account the viscosity of the host fluid and the effects of the
boundary layer. He calculated the total mean forces from the time-averaged integral of the
momentum flux over an arbitrary surface surrounding the particle, which was a quadratic
approximation. Doinikov [12] also used this approximation to establish a general solution for
a viscous and heat-conducting fluid. This solution can be applied to any symmetric acoustic
field without the restriction that the particle radius is much less than the wavelength. Danilov
and Mironov [2] also calculated the mean force on a small sphere in a viscous fluid. They also
distinguished between the total mean force and the acoustic radiation force. These two forces
are equal to each other in an ideal fluid but may differ very much in a viscous fluid due to the
effects of the viscous boundary layer surrounding the particle. Recently, Mitri and Fellah [13]
deduced new expressions for the radiation force acting on a sphere from the far-field scattering
wave field. Although, this approach has a simpler mathematical form, it is difficult to apply
it to the viscous cases because of the momentum absorption in the boundary layer. In those
cases, the traditional approaches based on the near-field scattering solutions are necessary.

There have also been a few publications for the acoustic radiation forces on cylinders.
Awatani [14] gave the first calculation of the acoustic radiation forces acting on a rigid
cylinder, and Hasegawa et al [15] derived another acoustic radiation function for an elastic
cylinder. Their calculations are all with an inviscid fluid and a planar traveling wave. In
1990, Wu and Du [16] reported an analytical solution for a rigid cylinder in an inviscid fluid
subjected to a standing wave field. They got a good agreement within 20% errors compared
with their experiments. Haydock [17] followed King’s [6] original approach and formulated
analytical solutions for the radiation force on a fixed or moving rigid cylinder in an ideal
fluid due to a standing wave. The solution is approximate, but it is easy to evaluate by
using common numerical software packages such as MATLAB. Wei et al [18] obtained the
analytical formulations for compressible cylinders in a non-viscous fluid in a standing wave
field by using the far-field acoustic scattering solution. Mitri and Chen [19] extended the
far-field method to gain the theoretical solutions for elastic and viscoelastic cylinders.

In the above papers, the force acting on one particle, namely the primary force, was
considered. If two objects are close together in an acoustic field in a fluid, there exist
other kinds of forces which are called the secondary forces on each object in addition to the
primary force. Many authors (e.g. [20]) investigated these forces with the conditions that the
wavelength is much larger than the sphere radius and the spacing between the objects. Under
this restriction on the wavelength, Weiser [21] gave the mutual forces between two rigid and
compressible particles. Zheng and Apfel [22] calculated the forces between two spheres in a
plane wave field under more general conditions without the restriction of the particle spacing.

Numerical work has appeared in recent years and is not as rich as the theoretical works.
Townsend et al [23] used the computational fluid dynamics (CFD) software and Gor’kov’s
theory to model the particle paths in a fluid in an ultrasonic standing wave. Their simulations
are suited to describing the devices, but did not really investigate the time-averaged forces on
particles in detail. By using the lattice Boltzmann (LB) method for solving the Navier–Stokes
(N–S) equations in the host medium, Cosgrove et al [24] simulated the particle motion in an
ultrasound field and compared the results with Wu’s [16] theoretical predictions. Haydock
[25] also adopted the LB method to calculate the time-averaged forces on a cylinder in a
standing wave and compared them with his analytical solutions [17]. However, it should be
noted that their simulations both show significant deviations from the theoretical predictions.
The reasons may be the restrictions of the LB method and the boundary conditions, which
will be discussed later in this paper.
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It is necessary to accurately predict the mean forces on suspended particles including the
primary force and the secondary force to design ultrasonic particle manipulators. Although
there have been many analytical solutions on this topic, it has not been possible to determine
the acoustic forces on particles in more complex system conditions such as proximity to
the chamber wall, complex viscous function, acoustic streaming and complicated shape of
the particle. Therefore, numerical modeling may become a powerful tool. Simple cases
can certainly be modeled by commercial software packages such as COMSOL. However,
there are some limitations of these software packages in solving more complex problems:
it is difficult to apply complicated boundary conditions such as non-reflecting conditions in
order to compare the results with theoretical solutions. Also the computational efficiency
is not enough for detailed simulations. Consequently, a special numerical method has to
be established for calculating the time-averaged acoustic forces acting on particles for the
design of ultrasonic particle manipulators. In this paper, we first give an analytical solution
for the time-averaged force acting on a rigid cylinder in an inviscid fluid in a standing wave,
which is more accurate than the solution in [17], and then efforts are made to calculate the
time-averaged forces on one or two rigid cylinders in ideal and viscous fluids subjected to
a standing sound wave field by solving the N–S equations directly with the [26, 27] finite
volume method (FVM) technique. The numerical results are compared with our theoretical
prediction and Haydock’s LB simulations [25]. The viscous effects of the host medium and
the secondary forces between particles are also investigated in detail.

2. Theoretical analysis

Here, a simple analytical solution is presented for the time-averaged force acting on a rigid
cylinder in an infinite inviscid fluid in a planar standing wave. The fluid pressure surrounding
a fixed particle is given by King [6] as

p − p0 = ρ0ϕ̇ +
ρ0

2c2
0

ϕ̇2 − 1

2
ρ0q

2, (1)

where q2 = u · u, u = −∇ϕ is the velocity vector of the fluid, ϕ is the velocity potential,
ρ0 is the density of the undisturbed state, p0 and p are the fluid pressure of the undisturbed
state and disturbed state, respectively, and c0 the sound velocity of the fluid. In the cylindrical
co-ordinates with the origin at the center of the cylinder as demonstrated in figure 1, where
the incident wave is in the x-direction, the time-averaged force on the surface of the cylinder
in the x-direction is

F = −
∫

〈p〉ndS = −aρ0

2c2
0

∫ 2π

0
〈ϕ̇2〉 cos θdθ +

aρ0

2

∫ 2π

0
〈q2〉 cos θdθ = Pϕ + Pq, (2)

where a is the cylinder radius, Pϕ and Pq are the contributions due to the potential energy and
the kinetic energy of the sound wave, respectively.

The total velocity potential is composed of the incident part ϕI and the scattered part ϕS:

ϕ = ϕT e−iωt = (ϕI + ϕS)e
−iωt . (3)

The time-independent incident and scattered velocity potential fields are expressed by

ϕI = A cos(kr cos θ + kh) =
+∞∑

m=−∞
CmJm(kr)eimθ , (4)

ϕS =
+∞∑

m=−∞
BmH(1)

m (kr)eimθ . (5)
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Figure 1. The geometry of a cylinder in a standing wave.

Here h is the distance from the nearest velocity node to the center of the cylinder in the
x-direction, A is the complex amplitude of the velocity potential, k = ω

c
is the wave number,

Cm = A
2 [imeikh + (−i)me−ikh] are constants, Jm(kr) and H(1)

m are the mth-order Bessel and
Hankel function of the first kind, respectively, and Bm are constants defined from the boundary
conditions.

The boundary condition on the rigid cylinder surface, vr = − ∂ϕ

∂r
= 0 at r = a, yields

Bm = − Jm−1(ka) − Jm+1(ka)

H
(1)
m−1(ka) − H

(1)
m+1(ka)

Cm. (6)

With the constants Bm and the orthogonal relations of trigonometric functions, we have

Pϕ = −aρ0

2c2
0

∫ 2π

0
〈ϕ̇2〉 cos θdθ = −aρ0ω

2

4c2
0

Re[ϕT ϕ∗
T ] = −πaρ0ω

2

4c2
0

(I +
1 + I−

1 ), (7)

where

I±
1 =

+∞∑
m=−∞

BmB∗
m±1H

(1)
m H

(2)
m±1 + BmC∗

m±1H
(1)
m Jm±1 + CmB∗

m±1JmH
(2)
m±1 + CmC∗

m±1JmJm±1,

(8)

and

Pq = aρ0

2

∫ 2π

0
〈q2〉 cos θdθ = aρ0

4
Re

[(
∂ϕT

a∂θ

) (
∂ϕT

a∂θ

)∗]
= πρ0

4a
(I +

2 + I−
2 ), (9)

where

I±
2 =

+∞∑
m=−∞

m(m ± 1)[BmB∗
m±1H

(1)
m H

(2)
m±1 + BmC∗

m±1H
(1)
m Jm±1

+ CmB∗
m±1JmH

(2)
m±1 + CmC∗

m±1JmJm±1]. (10)

Here, the symbol ∗ means ‘the conjugated value of’, Re means ‘the real part of’ and
Jm = Jm(ka), H(1)

m = H(1)
m (ka) and H(2)

m = H(2)
m (ka) are the value of the mth-order Bessel

function and Hankel function of the first and the second kind at ka, respectively. Therefore,
the total force can be expressed as

F = −πaρ0

4
Re

[
ω2

c2
0

(I +
1 + I−

1 ) − 1

a2
(I +

2 + I−
2 )

]
. (11)

Note that the final expression (11) for the time-averaged force is an infinite series and is also
valid for values of ka larger than ka � 1. This formula can be conveniently truncated and
computed by mathematical software packages such as Mathematica and MATLAB. If small
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cylinders are considered which means ka � 1, it appears sufficient that the terms of |m| � 2
are taken.

We take the same example as in [17], where the fluid is air (c = 340 m s−1, ρ0 = 1.2 kg m−3)
and a 1.4 μm radius cylinder is located in a standing wave with λ = 0.143 mm, A = 3.4 m s−1

and h = 3λ/8. The important value ka = 0.0615 in this case. Equation (11) gives the force,
F = −2.813 76 × 10−6 N, with terms up to |m| � 2, F = −2.813 31 × 10−6 N for both |m| � 4
and |m| � 10. The example shows that it is really enough to take only |m| � 2 terms under
the condition ka � 1. Haydock’s [17] solution obtained F = −2.946 × 10−6 N which is quite
close to our results. The difference may come from the assumption of Haydock’s solution that
h must be a small value (less than 0.335λ) and h = 3λ/8 in this case is not small enough.

The present solution is more common and accurate than Haydock’s which only took
up to the second-order terms. Moreover, it does not need the condition that h � 0.335λ.
Furthermore, with some truncations, the computation is not more complicated than Haydock’s
by using mathematical software packages.

3. The governing equations for numerical simulations

The analytical formula (11) is convenient to calculate the time-averaged force on a rigid
cylinder in a standing acoustic wave in infinite space, but it is difficult to apply to practical
models with complicated boundary conditions and fluid viscosity. Here, we use the
fundamental governing equations to calculate the acoustic forces numerically instead of
equation (1). The governing equations for a viscous fluid without heat conduction are the
N–S equations, which can be expressed as [12]

∂ρ

∂t
+

∂ρui

∂xi

= 0

∂ρui

∂t
+

∂(ρuiuj + σij )

∂xj

= 0,

(12)

where σij = pδij − [η( ∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij ) + ξ ∂uk

∂xk
δij ], ρ is the fluid density, ui is the fluid

velocity, p is the fluid pressure, η is the shear viscosity, ξ is the bulk viscosity, and summation
over repeated indices is implied as usual. Because the wave amplitude of the acoustic field is
small enough in all of the simulations, we use the linear equation of state here:

p = p0 + c2
0(ρ − ρ0), (13)

where ρ0 and p0 are the density and the fluid pressure of the undisturbed state, respectively,
c0 is the sound velocity of the fluid. If we have solved the N–S equations (12) correctly by
a numerical method, the results include all of the effects taking place in the fluid such as the
acoustic radiation force on an object and acoustic streaming.

The time-averaged forces exerted on a fixed rigid particle in an acoustic field can be
calculated by [6, 12]

Fi =
〈∫

S0

−σijnj dS0

〉
, (14)

where the angular bracket means average over one or several periods of the sound wave,
S0 is the boundary surface of the particle, and nj is the j th component of the outward unit
normal vector of the particle surface. For the inviscid fluid, equation (14) can be simplified as
equation (2).
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Figure 2. Elements and sides.

4. Numerical algorithms

The numerical method which we adopt to solve the governing equations (12) is the FVM with
the Jameson difference scheme based on triangular meshes. This method, which has second-
order accuracy in space, was originally proposed by Jameson [27] in 1981 and then extended
to triangular meshes in 1985 [26]. The fourth-order Runge–Kutta method was selected for
the time marching, which can improve accuracy and extend the stability region [27]. An
advantage of the FVM on triangular meshes is that it can deal with complicated geometrical
boundaries conveniently without loss of numerical precision.

Equation (12) can be expressed in the integral form as

1

∂t

∫
V

UdV +
∮

∂V

F · ndS = 0, (15)

where U is the vector of conservation parameters, F is the vector flux matrix which is a function
of U, ∂V is the boundary of a certain computational region, and n is the outward unit normal
of ∂V . From equation (12), U and F are written in Cartesian coordinates as

U =

⎛
⎜⎜⎝

ρ

ρux

ρuy

ρuz

⎞
⎟⎟⎠ and F =

⎛
⎜⎜⎝

ρux i + ρuyj + ρuzk(
ρu2

x + σxx

)
i + (ρuxuy + σxy)j + (ρuxuz + σxz)k

(ρuxuy + σyx)i +
(
ρu2

y + σyy

)
j + (ρuyuz + σyz)k

(ρuxuz + σzx)i + (ρuyuz + σzy)j +
(
ρu2

z + σzz

)
k

⎞
⎟⎟⎠ , (16)

where i, j and k are the unit vectors in x-, y- and z-directions, respectively, and ρ, ui and σ ij

are the same as defined in equation (12).
Assuming the conservation equations, equation (15), are satisfied in every triangular

element, we obtain the following semi-discrete equations for element n (see figure 2):

dUn

dt
= − 1

Vn

3∑
j=1

F(U)n,j · nj Sj , (17)

where Vn is the volume of the element, Sj is the area of the element side j , F(U)n,j is the flux
vector on the side j , and nj is the outward unit normal vector of the side j . The variables on an
element surface are computed from the average between its neighbor elements. For instance,
the variables flowing through side j between elements n and p which are clear in figure 2 are
determined by

Un,j = Un + Up

2
. (18)

The Jameson scheme needs artificial dissipative terms to capture shock waves and suppress
numerical oscillations. The dissipative terms suggested by Jameson [26, 27] are adopted in our

6



J. Phys. A: Math. Theor. 42 (2009) 285502 J Wang and J Dual

calculations. The total dissipative term in element n consists of the second- and fourth-order
terms:

Dn =
3∑

j=1

d
(2)
j +

3∑
j=1

d
(4)
j , (19)

where Dn is the total dissipative term of element n, and d
(2)
j and d

(4)
j are the second- and the

fourth-order dissipative flux on side j , respectively, which can be expressed as (see figure 2)

d
(2)
j = ε

(2)
j (Up − Un)j

d
(4)
j = −ε

(4)
j (∇2Up − ∇2Un)j .

(20)

Here the operator ∇2 means ∇2Un = ∑3
p=1 (Up − Un), and ε

(2)
j and ε

(4)
j are the adapted

coefficients for the second- and fourth-order dissipative terms, respectively.
The fourth-order Runge–Kutta method proposed by Deese and Agarwal [28] is used to

discretize the time derivative on the left in equation (17). Rewrite equation (17) as

dUn

dt
= Rn(Un), (21)

where Rn(Un) denotes the right-hand terms of equation (17). Then, the fourth-order Runge–
Kutta method can be expressed as

U(0) = Um,

U(k) = U(0) + αktR(k−1)

Um+1= U(4),

, (22)

where m denotes the last time step and m + 1 denotes the current time step, k is the Runge–Kutta
step number which varies from 1 to 4, t is the time step, and α1 = 1/4, α2 = 1/3, α3 = 1/2
and α4 = 1, respectively.

Because all of the analytical solutions such as [6, 9, 12, 17] only take the incident
and scattered waves on the particle into account without considering waves reflected from
boundaries, to compare the numerical results with the analytical predictions, we need non-
reflecting boundary conditions. The perfectly matched layer (PML) scheme is one of the
popular artificial non-reflecting boundary conditions. The key idea of the PML is to add
an extra region (PML) outside the original computational region, into which the outgoing
waves are allowed to propagate without any reflections and then dissipated entirely. In our
simulations, we adopt a new series of PML formulations for the nonlinear Euler and N–S
equations recently proposed by Hu et al [29].

5. Numerical results and discussions

5.1. Computational models

The time-averaged acoustic force on a fixed cylinder is investigated. The geometrical models
and meshes are shown in figure 3. Figure 3(a) is the model for investigating the primary force
on one cylinder without the PML, and figure 3(b) is a typical unstructured triangular mesh
used in computation where R = 80, Lx = 1000 and Ly = 500. Figures 3(c) and (d) show the
PML configurations in the geometrical model with single and double cylinders, respectively.
The double cylinders in figure 3(d) are symmetric about the horizontal centerline of the
computational region. Here, for comparison, we used the same computational parameters as
Haydock [25].

7
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(a) Single cylinder without PML (b) A typical mesh

(c) Single cylinder with PMLs (d ) Double cylinders with PMLs

Figure 3. Geometrical configurations.

For the model without PMLs, the left boundary is a sound source. We consider a standing
wave field between the left and the right boundary. The length of the computational region is
set as Lx = λ, where λ is the wavelength. The wave is initialized as ρ = ρ0 + dρcos(kx) and
zero fluid velocity field u = 0, where k is the wave vector, ρ0 = 1.0 and dρ = 0.01. To generate
a standing wave, the density on the left boundary is maintained at ρ = ρ0 + dρcos(ωt), and
the reflecting condition, ux = 0, is imposed on the right boundary. The wave parameters are
the wavelength λ = 1000, the sound velocity c0 = 1√

3
, the circular frequency ω = 0.003 63

and the period T = 1732.05.
For the models with PMLs, the geometrical parameters of the computational region and

the wave parameters are the same. However, reflections of the scattering field by the cylinder
and the left and right boundaries must be avoided. Therefore, four PML regions are added
outside the computational region as shown in figures 3(c) and (d). To generate a standing wave
between the left and the right boundary, we set the density of the pseudo-mean flow in the left
and right PMLs to be ρ = ρ0 + 1

2 dρ[cos (ωt + kx) +cos (ωt − kx)] = ρ0 + dρ cos(ωt) cos(kx)

at every time step. The density of the pseudo-mean flow in bottom and top PMLs is ρ0 and
the velocities in all PMLs are set as umx = 0 and umy = 0. The pseudo-mean flow, which sets
the background flow in a PML region, is an important concept of the PML algorithm defined
by Hu in [29]. The PML algorithm ensures that all perturbations and wave motions over the
pseudo-mean flow will be dissipated in the PML region.

All of the physical variables are dimensionless in the calculations. As mentioned in [25],
let u, x, t, ν be the dimensionless variables, where u is the velocity vector, x is the position
vector, t is the time, and ν is the kinematical viscosity, and u′, x′, t′, ν ′ are the corresponding
variables in the real system. If we choose the host fluid as air (c′ = 340 m s−1, ρ0

′ = 1.2 kg
m−3 and ν ′ = 1.4 × 10−5 m2 s−1) and ν = 0.167, the wavelength in the real system λ′ = Lx

′ =
λ(ν ′/ν)/(c′/c0) = 1.42 × 10−4 m and the frequency f ′ = c′/λ′ = 2.39 MHz. If the host fluid
is water (c′ = 1400 m s−1, ρ0

′ = 1000 kg m−3 and ν ′ = 1.0 × 10−6 m2 s−1) and ν = 0.167, the

8
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Table 1. Acoustic radiation forces for the cases without the PML (Fth: analytical solutions
presented in this paper, FLB: calculated by the LB method, FCOM: calculated by COMSOL, FFVM:
calculated by our FVM program).

R Lx Ly h Fth (10−5) FLB (10−5) FCOM (10−5) FFVM (10−5)

5 1000 100 375 −1.23 −3.04 −1.22 −1.25
10 1000 100 375 −4.93 −8.20 −5.13 −5.17
20 1000 200 375 −19.65 −25.12 −21.13 −21.17
40 1000 200 375 −76.72 −81.02 −108.41 −105.15
80 1000 500 375 −257.22 −247.20 −384.22 −375.30

wavelength in the real system λ′ = Lx
′ = λ(ν ′/ν)/(c′/c0) = 2.47 × 10−5 m and the frequency

f ′ = c′/λ′ = 56.7 MHz.

5.2. Simulations for an inviscid fluid without the PML

We first calculate the cases with the same system conditions as Haydock [25], but zero
viscosity. In this section, the PMLs are not considered, and the top and bottom boundaries of
the computational region are both reflecting. Haydock used the periodic boundary conditions
on the top, bottom and right boundaries, which are equivalent to the reflecting boundary
conditions numerically, because the computational region is symmetric. The widths of the
computational region Ly with the other properties for different cases are detailed in table 1.
All of the calculations are performed on a workstation with an Intel(R) Xeon(R) 5160 CPU
(3.0 GHz and 4MB L2 Cache) and 8 GB RAM. It takes 7 h and 45 min for a typical case with
R = 20 and 21 970 triangular elements.

For comparison, we also calculate all the cases by the COMSOL software, which is
a commercial finite element method (FEM) software package for multiphysics problems
developed by COMSOL Inc. Details of the results of the acoustic radiation force are calculated
from the FVM program, COMSOL and analytical solutions [17] are given in table 1 for
different particle radii.

It can be seen in table 1 that the results between our FVM program and COMSOL agree
with each other well. The maximum relative difference is 3.1%, which indicates that the FVM
results are correct. The differences between the two algorithms may result from the different
computational meshes.

The density contours at time 100T computed by the FVM program are plotted in figure 4.
The numerical density distortion because of the cylinder is clearly seen.

It is noted that the results from the LB method are significantly different from both the
analytical solutions and the COMSOL results. The major reason is that the LB results from
[25] are not in an ideal fluid but in the fluid with ν = 0.167. Therefore, we believe that the
LB method used by Haydock will not give an exact comparison to the analytical solution,
no matter what conditions are adopted, such as lowering ν. To avoid the influences of the
boundary reflecting waves, we will perform the calculations with the PML in the following
section.

It should also be noted that the differences between the FVM results and the analytical
predictions, which are calculated from the present analytical solution by the terms up to
|m| � 4 in equation (11), become large when the particle radius grows. We figure out that this
difference comes from the reflecting boundary conditions of the surrounding boundaries of the

9
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Figure 4. Density distribution at time 100T.

Table 2. Acoustic radiation forces for the cases with the PML (Fth: analytical solutions, FFVM:
FVM simulations).

Difference Difference
R Lx Ly LxPML LyPML h Fth (10−5) FFVM (10−5) (10−5) (%)

5 1000 50 50 50 375 −1.23 −1.24 −0.01 0.813
10 1000 80 50 50 375 −4.93 −4.93 0.00 0.000
20 1000 150 80 80 375 −19.65 −19.66 −0.01 0.051
40 1000 300 100 100 375 −76.72 −77.11 −0.39 0.508
80 1000 500 100 100 375 −257.22 −253.18 4.04 1.571

computational region, because the theoretical solution only takes into account the incident and
scattered waves on the particle surface and excludes the waves reflected from other surfaces.

5.3. Simulations for an inviscid fluid with the PML

The widths of the computational region Lx and Ly as well as the PML region LxPML and LyPML

with the other properties in different cases are detailed in table 2. Details of the results of the
radiation force calculated from the FVM program with the PML compared with the analytical
solutions are also listed in table 2 for different particle radii.

It can be seen in table 2 that the force magnitudes of the FVM results with PMLs are all
less than those without PMLs. These results are now quite close to the analytical predictions.
The maximum relative difference is less than 2%, which indicates that the FVM algorithm
with the PML can simulate the cases in infinite space correctly and accurately.

To test the capability of the PML further, we calculate the acoustic radiation force at
cylinder radius R = 20 with different computational region widths. Table 3 shows the
computational parameters, the time-averaged forces on the cylinder and the differences
compared with the analytical predictions. The percentage differences are very small in all the
cases. That is to say, the PML approach works well and we have obtained the results without
the influences of the top and bottom boundaries.

Table 4 lists the acoustic radiation forces of a particle with radius R = 20 at different
positions in the computational chamber compared with the theoretical predictions. For a
standing wave, the positions at h = 250 (λ/4), 500 (λ/2) and 750 (3λ/4) are the nodes or
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Table 3. Acoustic radiation forces for the cases with the PML at different Ly, R = 20 (Fth:
analytical solutions, FFVM: FVM simulations).

Lx Ly LxPML LyPML h Fth (10−5) FFVM (10−5) Difference (%)

1000 50 100 100 375 −19.65 −19.60 0.254
1000 100 100 100 375 −19.65 −19.69 0.204
1000 150 80 80 375 −19.65 −19.66 0.051
1000 200 80 80 375 −19.65 −19.66 0.051
1000 250 80 80 375 −19.65 −19.58 0.356

Table 4. Acoustic radiation force with the PML at different positions, R = 20 (Fth: theoretical
solutions, FFVM: FVM simulations).

Position h Fth (10−5) FFVM (10−5) Difference (10−5) Difference (%)

125 19.65 19.51 −0.14 0.712
250 0 0.079 0.079 –
375 −19.65 −19.66 −0.01 0.051
500 0 −0.017 −0.017 –
625 19.65 19.65 0.0 0.0
750 0 −0.015 −0.015 –
875 −19.65 −19.49 0.16 0.814

anti-nodes of pressure and velocity, where the acoustic radiation force is zero. The maximum
forces which can be predicted by the analytical formulations in section 2 appear at the positions
between one pressure and the next velocity node where h = 125 (λ/8), h = 375 (3λ/8), 625
(5λ/8) and 875 (7λ/8). It is shown in table 4 that the numerical results agree with the
theoretical solutions very well, with a maximum percentage difference is less than 1%.

5.4. Effects of viscosity

In this section, the effects of viscosity of the host fluid are investigated. The acoustic boundary
layer (thickness δ = (2ν/ω)1/2) appears surrounding the cylinder in a viscous fluid, in which
the momentum transfer takes place as well as on the cylinder surface. Some more complex
physical phenomena such as acoustic streaming, attenuation and change of the wave phase
happen in the boundary layer and the host fluid. Only a part of this momentum transfer
converts into the radiation pressure and the remainder into acoustic streaming [2]. On the one
hand, the acoustic boundary layer will reduce the magnitude of the acoustic radiation force
due to the energy absorption of the incident and scattered wave; on the other hand, the acoustic
streaming will generate a drag force on the cylinder. In our simulations, all these effects can
be taken into account simultaneously, because we solve the whole N–S equations directly. So,
the numerical results produce the total mean force actually exerted on the cylinder.

Our FVM method has been shown to be precise in inviscid cases in the previous sections.
Furthermore, to validate our FVM method in viscous cases, we compare the FVM results
in a viscous fluid with COMSOL. The fluid viscosity is 0.167 and other parameters are also
presented in table 5. Note that the cases in table 5 are all without the PML, because it is difficult
to implement the PML algorithm into COMSOL. We can see that the forces are all greater
than those with PML cases in table 6 because of the effects of top and bottom boundaries and
also greater than the inviscid cases. The results between our FVM method and COMSOL
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Table 5. Mean forces for the viscosity ν = 0.167 without the PML (FCOM: COMSOL simulations,
FFVM: FVM simulations).

Lx Ly h R FLB (10−5) FCOM (10−5) FFVM (10−5) Difference (%)

1000 200 375 20 −25.12 −30.68 −31.12 1.43
1000 200 375 40 −81.02 −138.83 −141.33 1.80
1000 300 375 60 – −307.32 −304.53 0.91
1000 500 375 80 −247.2 −444.46 −432.21 2.76

Table 6. Mean forces (×10−5) for viscosity versus radius at the cylinder position h = 375 and Lx

= 1000 with the PML.
����ν

R
5 10 20 40 80

0.0167 −1.76 −5.77 −21.17 −78.67 −246.90
0.0835 −2.36 −7.12 −23.26 −79.64 −232.23
0.167 −2.75 −8.01 −25.00 −81.16 −223.73
0.333 −3.32 −8.96 −27.18 −83.02 −214.88
0.835 −4.36 −10.54 −28.69 −85.30 −205.30
1.670 −4.79 −11.51 −26.42 −83.26 −192.87
3.33 −4.47 −10.60 −19.76 −67.87 −165.20
8.35 −3.51 −6.08 −7.06 −25.40 −95.40

agree with each other very well, even for large radii. The maximum relative difference is
less than 2.8%, which suggests that the FVM results are correct. The LB results are also
listed in table 5. Haydock [25] obtained these results at the same computational conditions
as ν = 0.167 without the PML. However, the LB results differ much from the results of both
COMSOL and our FVM method. The exact reason is not known yet, because we cannot
find any more detailed computational parameters in [25] except the geometrical and physical
parameters of the fluid and the incident wave. Perhaps, the other computational conditions
such as the size of a grid element and the algorithm for boundary conditions play an important
role in the LB simulation.

In table 6, we present the detailed results with the PML at the cylinder position h =
375 for a radius from 5 to 80 with a wide viscosity range from 0.0167 to 8.35. In the
viscous simulations, the non-slip boundary conditions (fluid velocity is confined to zero on
the cylinder surface) are imposed on the cylinder surface. Here, we got quite different results
from Haydock’s [25], where the mean force in viscous cases is always greater than the inviscid
prediction. We should point out that the mean force actually imposed on the cylinder is very
complicated in a viscous fluid. In our numerical simulations, generally speaking, there are
two different dependence profiles between the mean force and viscosity at different cylinder
radii as demonstrated in figure 5. The magnitude of the mean force first increases with the
increase of viscosity and then decreases after a certain viscosity in the small radius case that
the radius R is less than 40 (see figure 5(a)). There is one peak on the curve of the dependence
between the magnitude of the mean force and the viscosity. In the large radius case, R = 80
(see figure 5(b)), the magnitude of the mean force decreases monotonically with the increase
of the viscosity. We do not know the mechanism behind these dependences clearly. The valley
on the profile of the case with middle radius at low viscosity may be caused by the drag force
of the acoustic streaming being less than the magnitude of the force due to the viscous loss.
The magnitude of the total mean force goes down finally in every case, because the drag force
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(a) (b)

Figure 5. Total mean forces versus different viscosities: (a) R = 5, (b) R = 80.

Figure 6. Velocity vectors of the acoustic streaming around the cylinder (R = 20).

of the acoustic streaming may probably change the direction with the increase of δ/R. Danilov
[2] discussed the viscosity effects in two limited cases that δ

/
R � 1 and δ

/
R 
 1, but he

did not mention the general dependence with arbitrary viscosity. He concluded that the drag
force of acoustic streaming plays a minor role in the limit δ

/
R � 1, and the drag force may be

directed oppositely to the radiation pressure in the limit δ
/
R 
 1. This means that the total

mean force may even change its sign for very large viscosities. To confirm this conclusion,
the high-viscosity case with R = 20 and ν = 33.3, where δ/R = 6.77, is also calculated. The
total mean force is then 4.54 × 10−5 which is indeed directed against the radiation pressure in
an inviscid fluid.

If we take the velocity field averaged over time, the time-averaged acoustic streaming
field can be obtained. Figure 6 presents the velocity vectors of the acoustic streaming around
the cylinder in the case R = 20 with viscosity 0.167. The streaming field is asymmetric
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Table 7. Computational parameters for the secondary forces.

R h Lx Ly LxPML LyPML

10 375 1000 150 50 50
5 375 1000 100 50 50

(a) (b)

Figure 7. Attractive forces between two rigid cylinders in an acoustic standing wave: (a) R = 10,
(b) R = 5.

about the cylinder in the horizontal direction, because the cylinder is located at the midway
between a velocity node and its next anti-node. There are four outer big vortices away from the
cylinder boundary as described by Nyborg [30]. Note that the stream lines are smooth close
to the boundary like those in the theoretical predictions, while there are many small vortices
in Haydock’s LB simulations [31] which are probably caused by the boundary approximation
of the LB method.

5.5. The secondary forces in an inviscid fluid with the PML

As mentioned in the introduction, secondary forces will arise between two objects in a sound
field. These mutual forces result from the interaction between the scattering fields of the two
objects. The calculation geometry is shown in figure 3(b), and two cases of cylinder radius
R = 10 and R = 5 are considered. The computational parameters are listed in table 7. The
center-to-center distance varies from 22.5 to 60 for the case R = 10 and from 11.0 to 30 for
the case R = 5.

Figures 7(a) and (b) show the time-averaged forces between two cylinders for radius
R = 10 and R = 5, respectively. The simulations point out that the secondary forces in
the two cases are both attractive. The dashed lines in figure 7 are the results of nonlinear
curve fitting. The fitting function has the power form as f = ad −b, where d is the center-to-
center distance, f is the force, a and b are the parameters to be determined. The parameters
are determined to be a = 2461.83, b = 5.206 in figure 7(a) and a = 2.12, b = 4.109 in
figure 7(b), respectively. Weiser [21] gave a formula to calculate the mutual forces between
rigid or compressible particles under the conditions that the acoustic wavelength is much
greater than the particle radius and the center-to-center particle distance. This formula implies
that the mutual force should be inversely proportional to the separating distance to the fourth
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power (d4). The weakening parameter b = 5.206, in the case R = 10, is close to but larger
than 4.0. Moreover, when the radius decreases to R = 5, the parameter b approaches 4.0,
because the smaller radius is closer to the assumptions of Weiser’s theory. At the same time, in
figure 7, with the increase of the particle separation distance, the errors between the numerical
results from FVM and their fitted curve with the weakening parameter close to 4.0 increase
gradually, especially in figure 7(b) with R = 5. This is also because of the assumptions of
Weiser’s theory that the separating distance should be much smaller than the wavelength.

6. Conclusions

In this paper, we first obtain an analytical solution for the time-averaged force on a rigid
fixed cylinder in an inviscid fluid in a standing sound field, and then numerical calculations
are performed with inviscid and viscous fluid using the FVM algorithm to solve the N–S
equations directly. To avoid the computational region boundary reflection, the PML technique
is adopted.

Our analytical solution is easy to calculate by using mathematical software packages with
some truncations, and it is more common and accurate than Haydock’s [17] which only takes
into account terms up to the second order and is confined by the condition of small h.

The numerical results computed by our FVM program are compared with those of
COMSOL, our analytical solution and the LB method. Good agreement with COMSOL
is achieved in a closed chamber with reflecting boundaries. The PML results also agree very
well with the analytical solutions. Furthermore, the effects of viscosity are investigated by the
FVM program. Due to the effects of viscosity, including viscous losses and acoustic streaming
drag, the mean force on the cylinder varies with the viscosity in a complicated fashion. The
simulations show two kinds of complicated dependences between the mean forces acting on
the cylinder and the fluid viscosity at different cylinder radii and the same conclusion as
Danilov’s [2] that the total mean force can change its direction at high viscosity. We also
calculate the secondary forces between particles, where the results verify Weiser’s law of a
force inversely proportional to the distance to the fourth power.

The simulations also reveal that our numerical method based on the FVM algorithm and
PML technique is quite suitable for calculating the acoustic problem. The method is shown
to be correct and accurate from the comparison to the analytical prediction and COMSOL
software. It can also deal with problems with complicated geometrical shapes of particles
and chambers, complicated fluids and different kinds of acoustic waves. With the aid of the
PML technique which is difficult to implement in most commercial software package such as
COMSOL, our method is able to handle the cases in infinite and semi-infinite space. Compared
to the LB method, our scheme can deal with low-viscosity fluids more conveniently, since
the LB method cannot calculate inviscid cases. Moreover, the implementation of boundary
conditions in our method is more accurate than the LB method, because there are no artificial
small vortices close to the cylinder surface in our method as discussed in section 5.4. We
believe our method has a great potential in the numerical modeling for the design of ultrasonic
particle manipulation devices.

Future work should be done, to extend the model to three dimensions, introducing the
solid–fluid interaction to compute the forces on compressible particles, as well as taking the
effects of particle shapes into account. It is also a challenge to deal with the moving particles
by the current method, where some special methods such as moving mesh and the arbitrary
Lagrange–Euler method should be employed.
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